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Abstract Association mapping can be a powerful tool for

detecting quantitative trait loci (QTLs) without requiring

line-crossing experiments. We previously proposed a

Bayesian approach for simultaneously mapping multiple

QTLs by a regression method that directly incorporates

estimates of the population structure. In the present study,

we extended our method to analyze ordinal and censored

traits, since both types of traits are common in the evalu-

ation of germplasm collections. Ordinal-probit and tobit

models were employed to analyze ordinal and censored

traits, respectively. In both models, we postulated the

existence of a latent continuous variable associated with

the observable data, and we used a Markov-chain Monte

Carlo algorithm to sample the latent variable and determine

the model parameters. We evaluated the efficiency of our

approach by using simulated- and real-trait analyses of a

rice germplasm collection. Simulation analyses based on

real marker data showed that our models could reduce both

false-positive and false-negative rates in detecting QTLs to

reasonable levels. Simulation analyses based on highly

polymorphic marker data, which were generated by

coalescent simulations, showed that our models could be

applied to genotype data based on highly polymorphic

marker systems, like simple sequence repeats. For the real

traits, we analyzed heading date as a censored trait and

amylose content and the shape of milled rice grains as

ordinal traits. We found significant markers that may be

linked to previously reported QTLs. Our approach will be

useful for whole-genome association mapping of ordinal

and censored traits in rice germplasm collections.

Introduction

Landraces and primitive cultivars preserved in gene banks

generally show a broader range of phenotypic variation

than do advanced cultivars. Among the polymorphisms left

unused in advanced cultivars, there are many that would be

valuable for future breeding programs (Hawks 1983).

Utilization of such variation for further crop improvement

will depend on a better understanding of the genetic basis

for the phenotypic variation. Nowadays, association map-

ping (also known as linkage disequilibrium mapping) has

emerged as a powerful tool for detecting loci or genes

responsible for the phenotypic variation in crops (e.g., Yu

and Buckler 2006; Oraguzie et al. 2007). Since association

mapping can be done without requiring line-crossing

experiments, it is suitable for directly detecting QTLs by

using accessions in a germplasm collection. In gene banks,
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the characteristics of germplasms are systematically eval-

uated for characteristics such as morphology, flowering

phenology, disease resistance, and grain quality, and the

results are stored in database systems. If these data can be

analyzed by using DNA polymorphisms for the accessions,

then the loci or genes responsible for various characteris-

tics can be detected by association-mapping approaches.

The evaluation data for crop germplasms include a range

of data types in addition to continuous data, such as ordinal

and censored data. Because of the difficulty or laboriousness

of quantitative evaluations, quantitative traits are sometimes

measured in an ordinal manner. For example, morphological

characteristics are often scored in several ordered categories

on the basis of visual judgments. Similarly, the degree of

disease resistance is often scored on the basis of the mag-

nitude of the disease symptoms. Censored observations also

sometimes arise when the range of measurements is limited.

For example, flowering dates may be censored because of

the limited duration of an evaluation, and root depth may be

censored because of the limited depth of the pots used in the

evaluation. For these types of data, the statistical methods

that are used for more familiar continuous forms of data are

not optimal because the normality assumption is violated

(for all observations in ordinal data and for the censored

observations in censored data); furthermore, information

loss resulting from categorizing or censoring the continuous

traits greatly reduces the statistical power of such methods.

Therefore, association mapping for ordinal and censored

data requires special methods to replace the methods used

for continuous data.

Recently, various Bayesian methods based on the

Markov-chain Monte Carlo (MCMC) algorithm have been

developed for QTL mapping and association mapping

(Satagopan et al. 1996; Uimari and Hoeschele 1997;

Sillanpää and Arjas 1998, 1999; Uimari and Sillanpää 2001;

Sillanpää et al. 2001; Yi et al. 2003; Yi 2004; Sillanpää and

Bhattacharjee 2005; Yi et al. 2005; Iwata et al. 2007;

Sillanpää and Hoti 2007; Huang et al. 2007). Bayesian

mapping methods based on the MCMC algorithm can gen-

erally map multiple QTLs simultaneously; thus they can

correctly estimate the number, locations, and genetic effects

of QTLs for a complex trait governed by multiple QTLs.

These methods also have the advantage of being extensible.

For example, we can extend a model for continuous traits to

models for binary, ordinal, and categorical traits by postu-

lating a latent variable that underlies the generation of the

binary, ordinal, or categorical responses (Yi and Xu 2000;

Kilpikari and Sillanpää 2003; Yi et al. 2004; Sillanpää and

Bhattacharjee 2006; Yi et al. 2007; Huang et al. 2007).

A model for continuous traits can also be extended to models

for censored traits by a latent variable approach (Sorensen

et al. 1998; Sillanpää and Hoti 2007). That is, the mapping

of multiple QTLs for various types of traits can be

implemented through a latent variable approach based on the

Bayesian mapping methods.

Asian cultivated rice, Oryza sativa L., is an important

crop and staple food for half of the world’s population. A

complete and high-quality map-based sequence for rice

(International Rice Genome Sequencing Project 2005) and

other genomic resources such as mapped and annotated

cDNA clones (Kikuchi et al. 2003) have paved the way for

association mapping of rice at a whole-genome scale. Since

rice is expected to have high levels of population structure

because of self fertilization and the nature of its breeding

history, association mapping of rice creates a potential

problem: the presence of a population structure can mimic

the signal from an association and lead to more false posi-

tives or to missed real effects (i.e., false negatives) (Lander

and Schork 1994). A typical statistical model that deals with

the influence of population structure includes a term for the

DNA polymorphism itself and a term for the genetic

background of the individual (Thornsberry et al. 2001; Yu

et al. 2006; Malosetti et al. 2007; Jannink 2007; Zhao et al.

2007; Weber et al. 2007; Agrama et al. 2007). In our pre-

vious study (Iwata et al. 2007), we proposed an approach

that combined a Bayesian method for mapping multiple

QTLs with a model that deals with the influence of popu-

lation structure, and we evaluated the efficiency of our

approach in simulated- and real-trait analyses of a rice

germplasm collection. Our results indicated that the multi-

ple QTL model with population effect could reduce the

incidence of both false positives and false negatives com-

pared with single QTL models (with and without population

effect) and a multiple QTL model without population effect,

and suggested that association mapping has good prospects

in rice if proper methods are adopted.

In the present study, we extended our previous method to

deal with ordinal and censored data. We evaluated the effi-

ciency of the method for analyzing the variation in a rice

germplasm collection. We performed simulation analyses

based on real marker data to assess the accuracy of the

estimation. We also performed analyses of real trait data (i.e.,

heading date as a censored trait, and amylose content and the

shape of milled rice grain on a five-point scale as ordinal

traits), and we compared the results with QTLs previously

reported for these traits. Finally, we discuss the prospects for

the application of our approach to the association mapping of

ordinal and censored traits in a rice germplasm collection.

Materials and methods

Plant materials

As in our previous study (Iwata et al. 2007), we used 332

rice accessions. The 332 rice accessions were selected as
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representatives of the rice germplasm maintained in the

National Institute of Agrobiological Sciences (NIAS)

Genebank and were genotyped for 179 restriction fragment

length polymorphism (RFLP) markers (Kojima et al.

2005). The 332 accessions originate from 23 countries and

include 281 landraces and 51 modern cultivars (Table 1 in

Kojima et al. 2005). The 179 RFLP markers have been

located in the high-density genetic linkage map of rice

(Kurata et al. 1994; Harushima et al. 1998) and distributed

as landmarker RFLP sets from the NIAS DNA Bank

(http://www.dna.affrc.go.jp/). The population structure of

the 332 accessions was inferred by means of model-based

Bayesian clustering analysis (Pritchard et al. 2000) using

the 179 RFLP markers as described in Iwata et al. (2007).

In the analyses, we tested the admixture models with two to

eight populations, and the model in which the number of

populations (J) was six showed higher posterior probability

than the other models. Thus, we chose J = 6 and obtained

estimates for the proportion of accession i’s genome that

originated from population j, qij (Iwata et al. 2007). The

differentiation among populations was so large that most

accessions originated mainly from a single population (i.e.,

the maximum qij of each accession is larger than 0.9 in 278

out of 332 accessions). The Q matrix, the elements of

which (i.e., qij) represent estimates of the genetic back-

grounds of the accessions, was further incorporated into the

statistical models used for association mapping.

Statistical models

For the censored data, we employed the tobit (censored

regression) model. The tobit model supposes that there is a

latent (i.e., unobservable) variable yi
* that underlies the

generation of observable censored response yi for the ith

sample (i = 1, 2,…, N). The observable response yi is

defined to be equal to the latent variable yi
* whenever the

latent variable is below the specific threshold yT, and equal

to yT otherwise. That is, when values greater than yT are

censored,

yi ¼
yT if y�i [ yT

y�i if y�i � yT
:

�
ð1Þ

It is also possible to equate the observable response to

the latent variable when values less than yT are censored, in

which case the observable response is equal to the latent

variable whenever the latent variable is above the

threshold, and equal to the threshold otherwise.

For ordinal data, we employed the ordinal probit

(cumulative probit) model. The ordinal probit model also

supposes a latent (i.e., unobservable) variable yi
* that

underlies the generation of observable ordinal response yi

for the ith sample. That is, the value of each yi
* falls into

one of M contiguous bins on the real line demarcated by the

cut-points j0, j1,…, jM, and the observed values of yi are

determined by the following relationship:

yi ¼ m if jm�1\y�1� jm m ¼ 1; 2; . . .; Mð Þ: ð2Þ

Since the cut-points are also unobservable, the values of

jm are sampled a posteriori, but the first, second, and last

cut-points were fixed as j0 = -?, j1 = 0, and jM = ?.

When the number of bins is two, the model corresponds to

the probit model for binary data.

The method employed here is based on a variable

selection method developed by Kuo and Mallick (1998). In

both the tobit and the ordinal probit models, we described

the latent variables of individual i by the following linear

model:

y�i ¼
XJ

j¼1

qijaj þ
XK

k¼1

XLk

l¼1

xiklckbkl þ ei; ð3Þ

where qij is the (i, j)th element of matrix Q; aj the popu-

lation effect associated with population j (j = 1, 2,…, J);

Lk the number of alleles of marker k (k = 1, 2,…, K); xikl

Table 1 Setting for the QTL genotypes and effects used to generate the simulated datasets, and average variance of each QTL

Simulated QTLs

1 2 3 4 5 6

QTL genotypesa

NN QQ QQ QQ qq qq qq

KK qq qq qq QQ QQ QQ

Others qq qq qq qq qq qq

QTL effects

QQ 1.00 0.75 0.50 1.00 0.75 0.50

qq -1.00 -0.75 -0.50 -1.00 -0.75 -0.50

Average variance of each QTL 0.821 0.470 0.198 0.811 0.434 0.194

a NN, homozygous for the ‘Nipponbare’ allele in RFLP markers at the same positions; KK, homozygous for the ‘Kasalath’ allele in RFLP

markers at the same positions; others, the other genotypes in RFLP markers at the same positions
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denotes the genotypes at marker k for individual i

and equals 1 if the genotype is homozygous for allele l

(l = 1, 2,…, Lk) and equals 0 otherwise; ck the indicator

variable, and ck = 1 corresponds to the case in which the

marker is included in the model as a QTL representative,

and ck = 0 implies exclusion; bkl the effect associated with

the homozygous genotype of allele l for marker k; and ei

the residual error, which is assumed to follow N(0, re
2).

Here, we considered only marker positions as putative

QTLs in this model, although it is usually a false

assumption in practice, as discussed below. Because rice is

a species with a high degree of selfing, the dominance

effect was not included. Although epistatic effects can

theoretically be included in the model, we excluded them

from our analysis for simplicity. The linear model in Eq. 3

is similar to the one used in our previous study (Iwata et al.

2007), but considers marker loci to be multi-allelic rather

than bi-allelic.

In order to reduce the number of parameters sampled in

the MCMC estimation, we fixed the genetic effect of the

first allele of the marker k (i.e., bk1) at 0. Now, let

X ¼ X1;X2; . . . ;XK½ �

and

g ¼ c1b
T
1 ; c2b

T
2 ; . . .; cKbT

K

� �T
;

where Xk is an N 9 (Lk - 1) matrix whose (i, j)th element

is xik(j?1), and bk is a column vector for the genetic effects

of marker k without the effect of the first allele; that is,

bk2; . . .; bkLk

� �T
: Then, the matrix notation for the model in

Eq. 3 is

y� ¼ Qaþ Xgþ e; ð4Þ

where y* is an N 9 1 vector whose ith element is yi
*, a is a

J 9 1 vector whose jth element is aj, and e is an N 9 1

vector whose ith element is ei.

Bayesian estimation of parameters in the models was

carried out on the basis of prior and posterior distributions

of the parameters. The prior and posterior distributions are

described in Appendix A. MCMC sampling was used for

Bayesian inference about each of the parameters. The

details of MCMC sampling adopted in this study are

described in Appendix B.

Simulated datasets

Simulation A

As in our previous study (Iwata et al. 2007), we used the

observed genotypes of 179 RFLP markers from the 332 rice

accessions to generate the simulated datasets. The marker

genotypes remained the same as those in the real data, and

six QTLs were simulated at different positions randomly

selected from the 179 RFLP markers. The genotypes of the

QTLs were simulated according to the genotypes of the

RFLP markers at the same positions. For half (i.e., three) of

the QTLs, we simulated the QTL genotypes as QQ if the

marker genotype was homozygous for the allele of ‘Nip-

ponbare’ (a japonica cultivar), and as qq otherwise. For the

other half of the QTLs, we simulated the QTL genotype as

QQ if the marker genotype was homozygous for the allele of

‘Kasalath’ (an indica cultivar), and as qq otherwise

(Table 1). The genetic effects were set as 1, 0.75, and 0.5 for

the QQ genotype and -1, -0.75, and -0.5 for the qq

genotype. We then simulated the genotypic values of the

lines by summing up the genetic effects of the six QTLs.

Next, we simulated a residual variance set at re
2 = 1 to

generate the value of the latent variable for all the accessions.

We calculated the variance of the latent variable, r2
y� ; at this

point. Next, we sampled the population effectaj (j = 1, 2,…, J)

from Nð0; 0:25r2
y� Þ:We then added the population effect aj to

the value of the latent variable of accession i, weighted by qij.

The proportion of the variance due to population effects was

scaled as 20% (=0.25/1.25) to reflect population effects

estimated from the real datasets in our previous study (Iwata

et al. 2007). In this simulation, estimated population struc-

ture, i.e., qij, was used as a true value. In practice, however,

the estimated population structure is also subject to estima-

tion error, and the error may cause decline in statistical

power. The process described above was repeated 100 times

to generate 100 sets of values for the latent variable.

From the 100 sets of values for the latent variable, we

generated 100 simulated datasets for each of three types of

trait: continuous, censored, and ordinal traits. The pheno-

typic values of these traits were simulated according to the

values of the latent variable. For a continuous trait, the

phenotypic values were the same as the values of latent

variables. For a censored trait, we set the threshold value yT

to equal the median value for the latent variable, and we

simulated the phenotypic values according to the model in

Eq. 1. For an ordinal trait, we used two sets of bin cut-points.

In the first set, we chose cut-points at the 20, 40, 60, and 80

percentiles. In the second set, we chose cut-points at the 10,

20, 40, and 60 percentiles. Then, we converted the values of

the latent variables into ordinal scores ranging from 1 (for the

lowest bin) to 5 (for the highest bin) according to these bin

cut-points. In the remainder of the text, we refer to the ordinal

datasets based on the former and latter sets of cut-points as

the balanced and unbalanced datasets, respectively.

Simulation B

To evaluate the performance of the methods in the case

where genotypic data are obtained from highly polymorphic

markers, like simple sequence repeats (SSRs), we generated

another set of simulated datasets by using coalescent
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simulation (Kingman 1982; Donnelly and Tavaré 1995).

The simple demographic scenario used in the simulations

was not intended to simulate the historical demography of

rice populations but simply to simulate highly polymorphic

datasets that have population stratification. We used SIM-

COAL2 (Laval and Excoffier 2004) to simulate three

populations with migration. The three populations had 500

haploid individuals each, and were diverged from a popu-

lation of 500 haploid individuals 1,000 generations ago. The

migration rate between the three populations was 0.001 per

generation in both directions. Each individual had six

chromosomes each carrying 51 SSR markers. The recom-

bination rate between adjacent markers was 0.02 per

generation. We also simulated 11 SSR markers that were

not linked to other markers (i.e., recombination rate was

0.5) in order to simulate background genetic effect (i.e.,

genetic effect that cannot be captured by mapped markers).

Mutation rate of the SSR markers was 0.002 per generation.

From 1,500 simulated individuals, 300 individuals (100 for

each population) were randomly selected for the subsequent

process. We located four QTLs on the 20th markers of each

of first four chromosomes. We also located 11 QTLs on the

11 unlinked markers to simulate genetic background effect.

Genetic effects of the QTLs were simulated according to the

genotypes of the SSR markers at the same positions. The

genetic effect and a residual variance was sampled from

N(0, 1), and the sizes of the genetic effects were adjusted to

make QTLs have specific heritability. The heritability of the

four QTLs located on chromosomes and one QTL located

on unlinked markers were 0.1, while the heritability of

remaining QTL was 0.02. The phenotype of continuous data

type was converted to the phenotype of censored and

ordinal data in the same way as for simulated datasets A,

except that we did not generate the unbalanced ordinal data

in these datasets. We conducted Bayesian clustering anal-

ysis with the program Structure (Pritchard et al. 2000) with

the admixture model in which the number of population was

three. MCMC cycles for the Bayesian clustering analysis

were repeated 1 9 105 times after 1 9 104 cycles of a burn-

in period. The Q matrix estimated was further incorporated

into the model of Bayesian association mapping. We gen-

erated 100 datasets and conducted the Bayesian association

mapping in the same way as for simulated datasets A. The

genotypes of all 306 linked markers were used in the

Bayesian clustering analysis and the Bayesian association

mapping.

Real datasets

As real data, we analyzed heading date as the censored

trait, and glutinousness and the shape of milled rice grain

on a five-point scale as the ordinal traits.

The seeds of all accessions were sown in seedling cases

in the middle of April 2002 and transplanted into the

experimental field at NIAS (Tsukuba, Ibaraki, Japan) in the

middle of May. Heading date was measured as the number

of days after sowing until the first panicle of each indi-

vidual appeared under natural field conditions. The heading

date data was averaged over 25 individuals for each

accession. In this experiment, the duration of the evaluation

was limited to 160 days. That is, heading dates later than

160 days were censored. The data of 69 out of 332

accessions (ca. 20%) were censored.

Amylose content (used as a measure of glutinousness)

was measured by means of colorimetric analysis of the

starch–iodine reaction detected with an Autoanalyzer II

(Bran ? Luebe). Three grains of each accession were

degraded overnight with 2 ml 2 N KOH before mea-

surement with the Autoanalyzer II. After calculating the

apparent amylose content, we divided the data into five

categories: waxy (0–3% amylose content), dull (3–10%),

low (10–15%), medium (15–25%), and high (more

than 25%). We then scored these categories on a five-

point scale ranging from 1 (waxy) to 5 (high amylose

content).

The shape of the milled rice grains was scored on a five-

point scale ranging from 1 (broad) to 5 (narrow) on the

basis of visual judgments. In the visual judgments, we used

the digital images from our previous study (Iwata et al.

2007). In the previous study, 296 out of the 332 accessions

were cultivated in an experimental field at NIAS in the

2003 cropping season, and six randomly selected milled

rice grains from each accession were photographed with a

digital camera.

Data analysis procedure

In the statistical models used here, the marker loci can be

treated as multi-allelic. In our data, however, alleles from

the Japanese ‘Nipponbare’ cultivar and the Indian ‘Kasa-

lath’ cultivar dominated the 332 accessions at most loci

(Kojima et al. 2005). Thus, in the association mapping

analysis, alleles other than the ‘Nipponbare’ and ‘Kasalath’

alleles were merged into a single allele class. That is, we

regarded the marker loci as bi-allelic (when only ‘Nip-

ponbare’ and ‘Kasalath’ alleles were present) or tri-allelic

(when there were alleles other than the ‘Nipponbare’ and

‘Kasalath’ alleles). Of the 179 RFLP loci, 51 were

bi-allelic and 128 were tri-allelic.

For each dataset, MCMC cycles were repeated

13 9 104 times, and the first 3 9 104 cycles (burn-in) were

not used for estimating the parameter values. Sampling was

carried out every ten cycles to reduce serial correlation, so

that the total number of samples we retained was 1 9 104.
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This sampling scheme was based on the previously

described evaluation of the convergence of MCMC cycles

(Iwata et al. 2007).

We regarded a marker as ‘‘significant’’ when the mean

of the posterior distribution of ck was larger than a specified

threshold of 0.5. That is, a marker was regarded as sig-

nificant when it was included in the model as a QTL

representative (i.e., ck = 1) in more than 50% of the

MCMC samples. This threshold corresponds to the

‘‘moderate’’ threshold in our previous study (Iwata et al.

2007).

To evaluate the performance (i.e., the estimation accu-

racy) of our approach, we calculated the false-negative rate

(FNR), the false-positive rate (FPR), and the false-dis-

covery rate (FDR). FNR is the proportion of total loci

mistakenly regarded as non-significant when in fact they

were QTLs. FPR is the proportion of total loci mistakenly

regarded as significant when in fact they were not QTLs.

FDR is the ratio of FPR to all significant loci. The equa-

tions that define these indices can be found in Iwata et al.

(2007). In order to show a tradeoff relationship between

FPR and true-positive rate (TPR; 1-FNR), a receiver

operating characteristic (ROC) curve (Zweig and Campbell

1993) was obtained based on TPR, FPR and FDR. TPR,

FPR and FDR were calculated for 1,001 different levels

(0, 0.001,…, 1) of the ck threshold. For each type of trait,

TPR, FPR and FDR were averaged over all datasets con-

tained in each of simulations A and B, and ROC curves

were drawn based on the averaged TPR, FPR and FDR.

For the datasets of simulation A, in order to assess the

accuracy of estimation of the genetic effect of a QTL, we

compared the estimated and true values and calculated the

root-mean-square error (RMSE) between the estimated and

true values, scaled using the true value:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XN

i¼1

XK

k¼1

dk;i
f̂k;i � fk;i

fk;i

 !2
vuut ;

where N is the number of simulated datasets and D the

number of true positives over all simulated datasets. dk,i an

indicator variable in which a value of 1 corresponds to the

case in which the kth locus is a true positive in the ith

dataset, and a value of 0 corresponds to the remainder of

the possibilities. Since we fixed the genetic effect of the

‘Nipponbare’ allele of all markers at 0 in our statistical

model (see ‘‘Statistical models’’), we compared the esti-

mated and true values on the basis of the differences in

genetic effects between the ‘Nipponbare’ and ‘Kasalath’

alleles. That is, f̂k;i and fk,i are the estimated and true values

of the difference in the genetic effects of the ‘Nipponbare’

and ‘Kasalath’ alleles, respectively. In ordinal data, the

genetic effect of a QTL was estimated on a scale relative to

the residual variance, since the residual variance was fixed

at 1 in the statistical model for ordinal data (see ‘‘Statistical

models’’). However, we could directly compare the esti-

mated and true values of the genetic effects even for

ordinal data, because we set the residual variance at 1 in

our simulation study.

Results

Simulation A

The proportion of the phenotypic variance explained by the

simulated QTLs (i.e., heritability) in the datasets of simu-

lation A was calculated for the continuous data. In the 100

datasets, the average heritability of each QTL was 0.150

and the average joint heritability of all six QTLs was 0.540

(Fig. 1). The average heritability of each QTL was 0.248,

0.140, and 0.061, respectively, for QTLs that had large

(i.e., 1 or -1), moderate (i.e., 0.75 or -0.75), and small

(i.e., 0.5 or -0.5) effects, respectively.

The histograms in Fig. 2 show the number of datasets in

simulation A (out of 100) that fell into specified intervals

for FNR, FPR, and FDR. For FNR, the censored data

tended to show larger values than the continuous and

ordinal data (Fig. 2a). The average FNR was smallest in

the continuous data, followed by the balanced ordinal,

unbalanced ordinal, and censored data. The average FNR

Joint Heritability of All QTLs

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

a

b

Heritability of Each QTL

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

Ave. 0.540

Ave. 0.150

Fig. 1 a Heritability of each QTL. The proportion of phenotypic

variance explained by each QTL (i.e., heritability of each QTL) was

calculated over 600 QTLs (i.e., 6 QTLs 9 100 simulated datasets) for

continuous data. b Joint heritability of all QTLs. The proportion of

phenotypic variance explained by all QTLs (i.e., the joint heritability

of all QTLs) was calculated over 100 simulated datasets for

continuous data
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was larger for QTLs that had smaller effects (Table 2). In

particular, the average FNR for the QTLs that had small

effects reached 45% in the censored data, whereas the

corresponding average FNR for the QTLs that had large

effects was 6%.

For FPR, the ordinal data tended to show larger values

than the continuous and censored data (Fig. 2b). The

average FPR was smallest in the continuous data, fol-

lowed by the censored, unbalanced ordinal, and balanced

ordinal data. In all data types, FPR was less than 1% in

most datasets. The proportions of datasets in which no

false positives were observed (i.e., in which FPR = 0%)

were 0.69, 0.56, 0.50, and 0.49 in the continuous, cen-

sored, balanced ordinal, and unbalanced ordinal data,

respectively.

For FDR, the ordinal data tended to show larger values

than the continuous and censored data (Fig. 2c). The

average FDR was smallest in the continuous data, followed

by the censored, unbalanced ordinal, and balanced ordinal

data. In all data types, FDR was less than 20% in most

datasets.

ROC curves of four different data types were shown in

Fig. 3. In Fig. 3b, we also drew ROC curves based on TPR

and FDR in addition to normal ROC curves (i.e., ROC

curves based on TPR and FPR). In these graphs, perfect

discrimination (zero false negatives and zero false posi-

tives, or zero false negatives and zero false discovery)

corresponds to a point at the upper left corner of each

graph, and the closer the ROC curve is to the upper left

corner, the higher the performance of detection methods. In
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Fig. 2 Histograms for (a) the false-negative rate (FNR), (b) the false-

positive rate (FPR), and (c) the false-discovery rate (FDR), obtained

from 100 simulated datasets A for each data type. The simulated

datasets for continuous data were first generated using real marker

data, and were then converted into the datasets for censored and

ordinal data. For the ordinal data conversion, we generated two

different sets (i.e., balanced and unbalanced) of data. For details, see

the text

Table 2 False-negative rates for the three QTL effect sizes

Size of QTL effect FNR(%)

Continuous data Censored data Balanced ordinal data Unbalanced ordinal data

Small (0.5, -0.5) 27.5 45.0 34.5 40.5

Middle (0.75, -0.75) 5.0 12.5 9.0 9.5

Large (1.0, -1.0) 3.5 6.0 5.0 5.0
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both Fig. 3a and b, the curves were closest to the upper left

corner in the continuous data, followed by the balanced

ordinal, unbalanced ordinal, and censored data, indicating

the highest performance in QTL detection for these data

types in this order.

To evaluate the accuracy of our estimates of the genetic

effects, we also calculated the RMSE for correctly detected

QTLs (i.e., for true positives). RMSE was smallest in the

continuous data, followed by the balanced ordinal, cen-

sored, and unbalanced ordinal data (Table 3), but all values

were less than 26%.

Posterior averages of the number of 1 s in c, i.e., the

number of QTLs included in the model (NQ), showed a

tendency to be larger in censored and ordinal data than

continuous data (Fig. 4). In all data types, the posterior

averages of the number of QTLs were larger than the

number of simulated QTLs, i.e., 6.

Simulation B

The number of alleles of simulated markers ranged from 3

to 14 and its average was 6.6. Nei’s gene diversity (Nei

1973) of the simulated markers ranged from 0.21 to 0.88

and its average was 0.72.

The histograms in Fig. 5 show the number of datasets of

simulation B (out of 100) that fell into specified intervals

for FNR, FPR, and FDR. Histograms of FNR, FPR and

FDR showed the same tendency with ones obtained in the

datasets of simulation A. That is, the average FNR was

smallest in the continuous data, followed by the ordinal,

and censored data. The average FPR was smallest in the

continuous data, followed by the censored, and ordinal

data. The average FDR was smallest in the continuous data,

followed by the censored, and ordinal data.

ROC curves of three different data types also showed

the same tendency with ones obtained in the simulation A

(data not shown). That is, curves were closest to the upper

left corner in the continuous data, followed by the ordinal

and censored data in both ROC curves for TPR versus FPR

and TPR versus FDR. Posterior averages of the number of

QTLs included in the model also showed the same ten-

dency with ones obtained in the simulation A (data not

shown). That is, the posterior averages were larger in

censored and ordinal data than continuous.

Real data analysis

We found five, five, and six significant markers for heading

date, amylose content, and the shape of milled rice grains,

respectively (Table 4). The posterior average of the num-

ber of QTLs included in the model (NQ) was 11.5, 13.7 and

12.5 for heading date, amylose content, and the shape of

milled rice grains, respectively. With a stricter threshold

(0.9), we found two significant markers for each trait. One

significant marker (i.e., R2869) was observed for both

heading date and amylose content. One overlap (i.e., C962)

was observed between amylose content and the shape of

milled rice grains. There was no overlap between heading

date and grain shape.

For the heading date, the estimated effects of the

‘Kasalath’ allele for the significant markers were all neg-

ative except for the R3226 marker, indicating that QTL

allele link to the ‘Kasalath’ allele generally shortened the
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a bFig. 3 Receiver operating

characteristic (ROC) curves of

QTL detection in association

mapping for four different data

types in simulated datasets A.

True positive rate [TPR; 1-false

negative rate (FNR)] were

plotted against (a) false positive

rate (FPR) and (b) false

discovery rate (FDR). TPR, FPR

and FDR were obtained for the

different levels of threshold ck

and averaged over 100 datasets

of each data type. For details,

see the text

Table 3 Root-mean-square error values between the estimated and

true values of QTL effects

RMSEa (%)

Continuous data 19.8

Censored data 24.6

Balanced ordinal data 22.8

Unbalanced ordinal data 25.4

a RMSE between the estimated and true values of genetic effects of

true-positive QTLs, scaled using the true values
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Fig. 5 Histograms for (a) the false-negative rate (FNR), (b) the false-positive rate (FPR), and (c) the false-discovery rate (FDR), obtained from

100 simulated datasets B for each data type
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number of days to heading. For the amylose content, the

signs of the estimated effect of the ‘Kasalath’ allele dif-

fered among the significant markers, with no obvious

pattern. However, for the highly significant markers (i.e.,

C891 and R2869), the effects of the ‘Kasalath’ allele were

positive. For the shape of the milled rice grains, the esti-

mated effects of the ‘Kasalath’ allele were all positive,

indicating that the linkage of the alleles to the ‘Kasalath’

allele was responsible for narrower rice grains.

In analyzing the real data, we used a Poisson prior with

mean k = 1 on the number of QTL (i.e., the number of 1’s

in c; see Appendix A for details), because we thought that

the marker density in this study was not enough to capture

many QTLs segregating in the accessions. To evaluate the

influence of this hyperparameter setting, we analyzed real

data also with k = 10. As a result, the posterior averages of

ck were highly correlated between these two settings (i.e.,

correlations ranged from 0.974 to 0.995), although the

posterior averages of ck were significantly larger in k = 10

than in k = 1 (P \ 0.001 with the Mann–Whitney U test).

Significant markers corresponded between these settings

in heading date and the shape of the milled rice grain.

In amylose content, six markers were significant when

k = 10, five of which were also significant when k = 1.

These analyses suggest that the mean of the Poisson prior

does not strongly affect the results of analyses at least in

the range from 1 to 10, although the significance of

markers whose posterior average of ck is around 0.5 may be

affected by the mean of the Poisson prior.

Discussion

Combined with the latent variable approach, the Bayesian

multilocus association mapping method can be an efficient

way to detect true associations between DNA polymor-

phisms on the one hand and censored or ordinal traits on

the other. In our simulation studies, the FNR, FPR, and

FDR values were larger in the censored and ordinal data

than in the continuous data. The difference in these rates

between different data types, however, was less obvious,

and all the rates could be controlled at a practical level in

censored and ordinal data as well as in continuous data by

using the Bayesian method. In association mapping, it is

important to reduce the number of false positives caused by

the population structure. In our simulation studies, FPR

was less than 1% in most datasets in all data types, indi-

cating that the method successfully dealt with the effect of

population structure. Although the estimation accuracy for

the genetic effects of QTLs was worse in the censored and

ordinal data than in the continuous data (Table 2), the

RMSE was less than 26% even in the worst case (i.e., the

case for the unbalanced ordinal data; Table 3), indicating

that the estimation accuracy was also controlled at a

practical level. It is noteworthy that we can estimate the

genetic effects of QTLs for ordinal data as well as for

censored and continuous data, even though we cannot

directly observe continuous phenotypic variation hidden

behind the scoring phenotype.

The linear model used in this study (i.e., the model in

Eq. 3) is similar to the one used in our previous study

(Iwata et al. 2007), but considers marker loci to be multi-

allelic rather than bi-allelic. To evaluate the power of this

multiallelic model in the case where genotype data are

highly polymorphic (i.e., large number of alleles), we

conducted simulation analyses based on genotype data

generated from coalescent simulation rather than on the

real marker data of the rice germplasm. The results of the

simulations (i.e., simulation B) were comparable to ones

obtained in the simulations based on the real marker data

(i.e., simulation A), indicating that our models could be

applied to genotypic data based on highly polymorphic

marker systems, like SSRs. In the simulations, however, we

assigned a different allelic effect to each marker allele,

although this condition is unrealistic in practice. When

linkage disequilibrium between QTL alleles and marker

Table 4 Locations and estimated parameters for significant markers

in the real datasets

Trait Chromosome Locationa Markerb ck
c bkl

d

HD 1 87.7 G302* 0.916 -4.02 ± 4.09

3 20.1 R3226 0.629 12.08 ± 8.68

6 2.2 R2869 0.790 -11.12 ± 3.58

6 34.8 R2147* 0.941 -1.00 ± 4.48

12 3.0 R1684 0.821 -11.63 ± 3.44

AC 4 72.9 C891* 0.988 1.13 ± 0.27

5 12.9 R830 0.526 -0.30 ± 0.34

5 117.2 R521 0.664 -1.17 ± 0.36

6 2.2 R2869* 0.993 1.68 ± 0.45

6 117.7 C962 0.631 1.19 ± 0.60

GS 3 8.1 R1925* 0.943 0.06 ± 0.34

3 68.6 R250* 1.000 1.54 ± 0.33

4 0.6 C107 0.547 0.89 ± 0.35

5 45.0 R569 0.587 0.60 ± 0.19

6 117.7 C962 0.728 0.64 ± 0.26

11 20.7 G1465 0.894 0.80 ± 0.23

HD heading date, AC amylose content, GS shape of milled rice grains
a Marker location estimated on the basis of the genetic linkage map

constructed by Kurata et al. (1994)
b Markers that were significant with strict (i.e., 0.9) thresholds are

indicated with an asterisks
c Mean of the posterior distribution of ck

d Mean and SD of the posterior distribution of bkl for the ‘Kasalath’

allele. In the calculation of mean and SD, we accounted only for

MCMC samples in which ck = 1
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alleles is incomplete, the statistical power of the methods

will become lower than obtained in the simulation study.

The simulation study was also based on unrealistic demo-

graphical settings as described in ‘‘Materials and

methods’’. To investigate the power of the analysis more

concisely, a more detailed simulation study like Meuwissen

et al. (2001) may be necessary.

The size of the genetic effects of the QTLs is expected

to affect their FNR. In this study, we simulated three dif-

ferent sizes of QTL effects. The results showed that the

FNR of QTLs with small effects showed large values (i.e.,

34–45%) in the censored and ordinal data, whereas the

FNR for QTLs with large effects were much lower (i.e., 5–

6%). To clarify the relationship between heritability and

the successful detection of a QTL, we applied logistic

regression to this relationship. The resulting contribution of

heritability to successful detection of a QTL was highly

significant (P \ 0.0001) in all data types. On the basis of

the estimated regression equations, the probability that a

QTL will be detected exceeds 0.9 when its heritability is

0.2 or higher (Fig. 6). Thus, our method can detect most of

the major QTLs in both censored and ordinal data,

although the method will miss a large proportion of the

intermediate to minor QTLs. However, it must be noted

that major QTLs can also be missed if the linkage dis-

equilibrium between genetic markers and QTLs is not high.

The statistical models used in this study contain popu-

lation effects (i.e., aj) as well as the effects of markers

distributed genome-wide (i.e., bkl). Although the popula-

tion effects are expected to absorb effects caused by

population stratification, it may possibly cause false neg-

atives. That is, if the distribution of a causal allele

correlates strongly with estimated population structure (i.e.,

Q matrix), the effect of the QTL may be absorbed in the

population effects and then the QTL will not be detected.

When QTL effects are collinear with population structure,

they are more likely to be absorbed by population than by

marker effects because the former are fixed (not shrunken

to zero) while the latter are random (and are shrunken to

zero).

We also investigated the impact of biasing the score

distribution in the ordinal data by comparing estimation

accuracy between balanced and unbalanced ordinal data. In

this comparison, the unbalanced ordinal data tended to

show larger values for FNR than the balanced ordinal data,

whereas the opposite tendency was observed for FPR and

FDR (Fig. 2). A paired t test showed that the difference

between the balanced and unbalanced ordinal data was

significant for FNR (P = 0.032) but was not significant for

FPR (P = 0.765) and FDR (P = 0.843). Thus, biasing the

score distribution in ordinal data may decrease the statis-

tical power of this approach for detecting QTLs, although it

does not result in detecting non-functional spurious asso-

ciations. In the evaluation of crop germplasms, grading the

characteristics of accessions is an efficient way to measure

a large number of samples. Our results indicate that the

evenness of the score distribution (i.e., equal frequency of

accessions among the score classes) should be taken into

account when the grading system is determined to increase

the statistical power for detecting QTLs.

In this study, we assumed that genotype data were

available for censored individuals. In practice, however,

genotype data may not be available for censored individ-

uals. For example, we may genotype only individuals

showing extreme phenotype (i.e., selective genotyping) or

only susceptible or survived individuals. If genotype data

are also missing for censored individuals, a more advanced

modeling scheme such as Sillanpää and Hoti (2007) is

necessary.

In Bayesian QTL mapping, reversible-jump MCMC

algorithm (Green 1995) has been used as an almost routine

tool (Yi 2004). The reversible-jump procedure can move

between models of different dimension so that it can eval-

uate models of unknown number of QTLs. Although the

method has flexibility in applications, it is sometimes sub-

ject to poor mixing and slow convergence (Yi 2004). In this

study, we used a Bayesian variable selection method pro-

posed by Kuo and Mallick (1998). The method is similar to,

but simpler than, the stochastic search variable selection

(SSVS) method developed by George and McCulloch

(1993), which has been utilized in multiple QTL mapping

(e.g., Yi et al. 2003). In Bayesian variable selection methods,

the parameter space has constant dimensionality and hence
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Fig. 6 Conditional probability [p(h)] that a true QTL with a given

heritability (h) would be successfully detected in the simulation study.

The probability calculation was based on the estimated logistic

regression equations for successful detection of QTLs as a function of

the heritability of the QTLs. We estimated the probability separately

for each of four different data types (i.e., continuous, censored, and

balanced and unbalanced ordinal)
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has the advantage that a Gibbs sampler can be applied

directly without concern for the varying dimension aspects

caused by the uncertainty in the number of QTLs (Godsill

2001; Yi 2004). In these methods, a varying dimensional

parameter space is augmented to a fixed dimensional space

to achieve the constant dimensionality. In this study, we

sampled parameters bk even when ck = 0 (i.e., bk was not

used in the model) for achieving the constant dimensional-

ity. The algorithms proposed by Yi et al. (2005) and Yi et al.

(2007) enable us to omit the sampling of bk when ck = 0,

and thus they have computational advantages over the

algorithm used in this study. Fast and efficient algorithms

must be considered when the number of markers gets large.

For discussions about relationship between reversible-jump

MCMC and Bayesian variable selection methods, see

Godsill (2001) and Yi (2004).

We analyzed the heading date, amylose content, and

shape of milled rice grain as real data, and found five, five,

and six significant markers, respectively. Most of these

markers may be linked genes and QTLs that have been

previously reported. For heading date, the significant mar-

ker R2147 on chromosome 6 may be linked to the

photoperiod sensitivity gene Hd1, which is a rice ortholog

of the Arabidopsis CONSTANS gene (Yano et al. 2000).

Marker R2869 on chromosome 6 may be linked to the Hd3a

gene, which is a rice ortholog of the Arabidopsis FT gene

(Kojima et al. 2002). Marker R3226 on chromosome 3 may

be linked to the heading date QTL Hd6 (Yamamoto et al.

2000). Markers G302 and R1684 may also be linked to

previously reported QTLs (Li et al. 2003; Mei et al. 2003).

For amylose content, marker R2869 on chromosome 6

may be linked to the QTL that controls a-amylase activity

(Cui et al. 2002). The Waxy gene, which controls amylose

synthesis in both the endosperm and the pollen of cereal

crops, also resides in the region near this marker (e.g.,

Yamanaka et al. 2004). Marker C891 on chromosome 4,

marker R521 on chromosome 5, and marker C962 on

chromosome 6 may be linked to the amylose-content QTLs

reported by Lanceras et al. (2000), He et al. (1999), and Li

et al. (2004), respectively.

For the shape of the milled rice grain, three out of the six

significant markers (i.e., R250, R569, and G1465) corre-

spond to the same markers in our previous study, (Iwata

et al. 2007), which were highly significant for rice grain

length. As described by Iwata et al. (2007), marker R569

on chromosome 5 may be linked to a previously reported

QTL for grain length and length–width ratio (Wan et al.

2005). Marker R250 on chromosome 3 may also be linked

to a QTL for grain length that has been detected around the

centromeric region of chromosome 3 (Huang et al. 1997).

The correspondences between significant markers on the

one hand and previously reported genes and QTLs on the

other indicate the practical efficiency of our approach.

Some of the pairs listed above (i.e., pairs between signifi-

cant markers detected in this study and previously reported

genes and QTLs), however, show a discrepancy in the

estimated location. For example, the location of R2147

shows a 9 Mb deviation from the genomic region of Hd1.

In our statistical model, we considered only marker posi-

tions as putative QTLs. In other words, we assumed

complete linkage disequilibrium between marker alleles

and QTL alleles in our model. In practice, however, link-

age disequilibrium between marker alleles and QTL alleles

is incomplete, with rare exceptions. Incomplete linkage

disequilibrium between marker alleles and QTL alleles

may cause the discrepancy between actual and estimated

locations. In the future, the resolving power of the location

estimation in our approach may be improved by using

high-density markers such as genome-wide single-nucleo-

tide polymorphism (SNP) markers.

In the evaluation of crop germplasms, we often encounter

censored and ordinal data, since labor- and time-saving

measurements are necessary to permit routine evaluation of

a large number of accessions for various characteristics. Our

results suggest that it will be practical to conduct association

mapping of these types of data in order to detect novel QTLs.

Our approach will be useful for detecting QTLs of various

traits by using a crop germplasm collection and, thus, it will

permit more efficient use of the data resources stored in crop

germplasm databases in the future.

We have written computer programs in Java language to

implement the proposed method. The programs are avail-

able from the senior author upon request.
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Appendix A: Priors and posteriors

We considered the prior distributions of the parameters in

the model in Eq. 4 except c as follows:

aj�Uð�1;1Þ;
bk �Nð0; Ir2

bk
Þ;

r2
bk
� tbs2

bv
�2
mb
;

and

r2
e � tes2

ev
�2
me
;

where tb, sb
2, te, and se

2 are hyperparameters for the dis-

tributions. That is, r2
bk

was sampled from a scaled inverted

chi-square distribution with tb degree of freedom and scale

parameter sb
2, and re

2 from the same distribution with dif-

ferent parameters (i.e., te and se
2).
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We considered that the prior distribution of the number

of 1 s in c; i.e., the number of QTLs included in the model

(NQ), follows a truncated Poisson distribution. That is,

NQ ¼
XK

k¼1

ck

and

pðNQ ¼ nÞ ¼
kn expð�kÞ

n!

�PQmax

i¼1

ki expð�kÞ
i! if n�Qmax

0 if n [ Qmax

8<
: ;

where k is a hyperparameter for the distribution and is

construed as the expected number of QTLs included in the

model, and Qmax is a hyperparameter that determines the

upper limit of the number of QTLs that can be included in

the model. The Poisson prior on the number of 1 s in c; has

been proposed by Yi (2004).

The prior of the cut-points in the ordinal probit model

in Eq. 2, i.e., jm (m = 2, 3,…, M - 1), has a uniform

distribution that respects the ordering constraints. That is,

jmjjm�1; jmþ1�U½jm�1; jmþ1�:

Bayesian implementations of the tobit model are based

on data augmentation, and they have been applied to

statistical genetic analysis for censored traits (Sorensen

et al. 1998; Sillanpää and Hoti 2007). In the tobit model in

Eq. 1, yi
* values are not observed if yi

* is greater than or

equal to the threshold yT, although their values are

necessary for estimating parameters in the model in

Eq. 3. The unobserved yi
* values are augmented by

values sampled from the fully conditional posterior

distribution:

y�i ja; g; r2
e � TN½yT;1Þðqiaþ xig; r

2
eÞ ðA1Þ

where TN[a,b)(l, r2) is a normal distribution N(l, r2)

truncated to [a, b), qi is the ith row of matrix Q, and xi is

the ith row of matrix X. The sampling of unobserved yi
*

values was conducted repeatedly in the MCMC sampling

procedure, as described in the next section.

Bayesian implementations of the ordinal probit model

based on data augmentation were presented by Albert

and Chib (1993), and they have been applied to multi-

locus QTL mapping for ordinal traits (Yi et al. 2004,

2007). In the model, yi
* in Eq. 3 is not observed for all

samples, and the variance of yi
* is assumed to be 1 for

consistency with the standard normal c.d.f. link function

(Cowles 1996). Thus, the yi
* values are augmented

by values sampled from the fully conditional posterior

distribution:

y�i ja; g; j; yi� TNðjyi�1
;jyi
�ðqiaþ xig; 1Þ; ðA2Þ

where j is a vector for the bin cut-points, i.e.,

j0; j1; . . .; jMð ÞT : The fully conditional posterior

distribution of jm is uniform, as follows:

jmjy; y�; jm�1; jmþ1�U½maxðy�i jyi ¼ m; jm�1Þ;minðy�i jyi

¼ mþ 1; jmþ1Þ�: ðA3Þ

Here, let X* = [c1X1,c2X2,…, cKXK]. Then, Eq. 4 can

be rewritten as:

y� ¼ Qaþ X�bþ e

where b ¼ bT
1 ; b

T
2 ; . . .; bT

K

� �T
: Here, let

Qaþ X�b ¼Wh;

where

W ¼ ½Q;X�� ðA4Þ

and h ¼ aT ; bT
� �T

; and let

R ¼

0 0 � � � 0

0 Ir2
e=r

2
b1

..

.

..

. . .
.

0
0 � � � 0 Ir2

e=r
2
bK

2
66664

3
77775; ðA5Þ

C ¼WT Wþ R; ðA6Þ

and

r ¼WT y�: ðA7Þ

Then, the conditional posterior distribution of the ith

element of h is:

hijh�i; c; r
2
e ; y
� �N ~hi; r

2
e=ci;i

� 	
; ðA8Þ

where c is a vector whose kth element is ck, ~hi ¼
ðri � Ci;�ih�iÞ=ci;i;; is the ith diagonal element of the

matrix C, ri is the ith element of vector r, Ci,-i is a row

vector obtained by deleting element i from the ith row of

the matrix C, and h�i is a vector obtained by deleting

element i from the vector h (Sorensen and Gianola 2002,

p. 566).

The fully conditional posterior distribution of r2
bk

is

given by

r2
bk
jbk �~tbk

~s2
bk

~v�2
~tbk
; ðA9Þ

where bk is a column vector for the genetic effects of

marker k, i.e., bk2; . . .; bkLk

� �T
; ~tbk

¼ Lk þ tb � 1; and

~s2
bk
¼ bT

k bk þ tbs2
b

h i
=~tbk

:

For the tobit model, the fully conditional posterior dis-

tribution of re
2 is given by:

r2
e jh; c; y� �~te~s

2
e~v�2

~te
; ðA10Þ
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where ~te ¼ nþ te and ~s2
e ¼ ½ðy� �WhÞTðy� �WhÞ þ

tes2
e �=~te: For the ordinal probit model, re

2 is fixed at 1 (see

Eq. A2).

The fully conditional posterior distribution of ck is given

by:

ckja; b; c�k; r
2
e ; y
� �Bð1; ~pkÞ; ðA11Þ

where c�k is a vector obtained by removing element k from

the vector c;

~pk¼
ak=ðakþbkÞ ifgk\Qmax

0 ifgk�Qmax

;

�

ak¼
kgkþ1

cðgkþ1Þ!

�exp � 1

2r2
e

ðy��Qa�Xg�kÞ
Tðy��Qa�Xg�kÞ�k

� 

; and

bk¼
kgkþ1

cgk!

�exp � 1

2r2
e

ðy��Qa�Xg��k Þ
Tðy��Qa�Xg��k Þ�k

� 


where

gk ¼
XK

i¼1

ci � ck and

c ¼
XQmax

i¼1

ki expð�kÞ
i!

:

The vector g�k is the column vector of g with the entries

corresponding to marker k replaced by bk. Similarly, g��k is

obtained from g with the entries corresponding to marker k

replaced by the null vector (0).

In the analyses, we set hyperparameters for the prior

distributions as tb ¼ 2; s2
b
¼ 1; te ¼ �2; s2

e ¼ 0; k ¼ 1; and

Qmax ¼ 15: In this hyperparameter setting, the prior of r2
e

becomes a flat prior (i.e., an improper uniform distribu-

tion). Thus, the parameters a; r2
e and j had improper

distributions in this study. When improper priors are

assigned, the posterior distributions may not always be

proper (Hobert and Casella 1996). One way to avoid an

improper posterior distribution caused by an improper prior

distribution is to specify upper and/or lower limits of

parameters. In this study, however, we did not specify such

limits for the parameters a; r2
e and j; because the improper

priors of these parameters seemed to work well in the

simulation studies.

Appendix B: MCMC sampling

On the basis of the above equations for prior and posterior

distributions, we can use the Gibbs sampler to generate

MCMC samples from the posterior distribution of the model

parameters. In the sampling of yi
* and jm in the model in

Eq. 2, however, we used the multivariate Hastings-within-

Gibbs algorithm proposed by Cowles (1996), since the latter

algorithm substantially improves the convergence of the

MCMC estimations (Cowles 1996). Setting the initial values

of the parameters as re
2 = 1, r2

bk
¼ 1; aj = 0, bkl = 0, and

ck = 0, the MCMC sampling proceeds as follows:

1. Update W and R with Eqs. A4 and A5, respectively.

2. Sample j from the full conditional posterior distribu-

tion described in Eq. A3. (This step is only necessary

for ordinal data.)

3. Sample y*. The full conditional posterior distribution

of y* is described in Eq. A1 for censored data and

Eq. A2 for ordinal data.

4. Update C and r with Eqs. A6 and A7, respectively.

5. Sample a and b (i.e., h) from the full conditional

posterior distribution described in Eq. A8.

6. Sample r2
bk

for each k from the full conditional

posterior distribution described in Eq. A9.

7. Sample r2
e from the full conditional posterior distri-

bution described in Eq. A10. (This step is not

necessary for ordinal data.)

8. Sample c from the full conditional posterior distribu-

tion described in Eq. A11.

The above process was repeated many times (see ‘‘Data

analysis procedure’’ in ‘‘Materials and methods’’) to obtain

the MCMC samples.
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